DTA-UNTERSUCHUNG DER UMWANDLUNGEN DES AMORPHEN SCHWEFELS

W. Świątkowski

INSTITUT DER STRAHLENCHEMISCHEN TECHNIK DER TECHNISCHEN HOCHSCHULE, 90–924 ŁÓDZ, POLEN

(Eingegangen am 18. Mai, 1988; in revidierter Form am 23. Januar, 1989)

DTA was applied to investigate amorphous sulfur samples remelted at different temperatures T_f . For the sample remelted at $T_f < 159$ °C, an exothermic process I occurs in the range 30-40 °C. Transformation of orthorhombic to monoclinic sulfur, melting and polymerization of S_8 rings was observed at higher temperatures. For the sample remelted at $T_f > 159$ °C, a new, fast exothermic process II occurs at ambient temperature, followed by an exothermic process III at slightly higher temperature. The next, also exothermic process IV is detected in the vicinity of the melting point. The heats of the thermal effects for all the above-mentioned processes, and the part of sulfur insoluble in CS₂, were determined. An attempt was made to evaluate the mechanism of the transformations.

Durch rasche Abkühlung einer Schwefelschmelze entsteht ein amorphes Produkt. Es enthält viel S₈-Ringe (bis 94%), kleine Menge von anderen Ringen (hauptsächlich: S₆-etwa 1%, S₇-etwa 4%, S₉-etwa 0,5%, S₁₂-etwa 0,4%) und Polymere S_n ($n = 1\ 000-12\ 000$) [1-3], für die in dieser Arbeit die Annahme der Kettenstruktur zulässig zu sein scheint [4, 5]. Mit der Erhöhung der Schmelztemperatur T_f von 116 bis 243° nimmt der Gehalt an Polymeren von 0,17 bis 40% zu [1]. Die Zunahme ist bei $T_f = 159^\circ$ sprunghaft, was durch die Polymerisation der S₈-Ringe verursacht wird [2-5].

Der amorphe Schwefel wandelt sich schon bei Zimmertemperatur exotherm in die rhombische Modifikation (S_{α}) um [6], die aus regelmässig angeordneten S_8 -Ringen besteht [7]. Während dieser Umwandlung sollten folgende Prozesse ablaufen:

A) Die Umgestaltung der Ketten in unregelmässig gebaute S_8 -Ringe:

$$S_n$$
 (Kette) $\rightarrow \frac{n}{8} S_8$ (amorphe Ringe) (A)

B) Die Umwandlung der metastabilen S_m -Ringe ($m \neq 8$) in die S_8 -Ringe. Man nimmt an [6], daß dieser Prozess über ein Polymeresstadium zustande kommt:

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

$$aS_m$$
 (Ringe) $\rightarrow S_{am}$ (Kette) $\rightarrow \frac{am}{8}S_8$ (amorphe Ringe) (B)

C) Die Ordnung der inneren Struktur und der gegenseitigen Lage der S₈-Ringe, um endlich das rhombische Gitter zu bilden:

$$S_8$$
 (amorphe Ringe) $\rightarrow S_8$ (rhombisches Gitter) (C)

Nach Literaturangaben [6] sind die obengenannten Prozesse exotherm, wobei der Mechanismus der Umwandlung des amorphen Schwefels nicht in einzelnen erklärt wird.

In dieser Arbeit werden die Umwandlungsvorgänge der bei verschiedenen Temperatur T_f umgeschmolzenen Proben mittels DTA untersucht. Weil diese Proben im Gehalt an S_n -Ketten sich unterscheiden, erwartete man Hinweise auf den Umwandlungsmechanismus, besonders auf den mechanismus des Prozesses (A).

Experimenteller Teil

Für die DTA-Untersuchungen wurden die Schwefelproben (99,98% Reinheit, POCh Polska) in Glasampullen (Innendurchmesser 4 mm, Rauminhalt von etwa 0,15 cm³) eingeschmolzen [8]. Die Schwefel- (Einwaage- ca. 0,18 g) und die Glasmenge wurden mit einer Genauigkeit von 0,0001 g ermittelt.

Zuerst wurde die Probe 2 Stunden lang bei $121 \pm 2^{\circ}$ umgeschmolzen und danach langsam bis Zimmertemperatur abgekühlt. Nach 24 Stunden wurde sie 72 Stunden bei 105° und 120 Stunden bei 60° getempert. Der so gewonnene rhombische Schwefel wurde mittels der DTA-Methode untersucht. Die dabei bestimmte Fläche des Schmelzpeaks $S_{\rm rh}$ diente bei den nachfolgenden quantitativen Auswertungen als Bezügsgrösse. Nachher wurde dieselbe Probe 2 Stunden lang bei einer bestimmten Temperatur $T_f \pm 2^{\circ} (T_f: \text{von 121 bis 400}^{\circ})$ umgeschmolzen. Anschliessend wurde sie in flüssigen Stickstoff eingeworfen. Dort wurde der amorphe Schwefel bis zur DTA-Untersuchung gelassen.

Für die Bestimmung der Umwandlungswärmen war es zweckmäßig die befand sich im Thermostat bei $25 \pm 0,002^{\circ}$ [11]. Als Inertsubstanz wurde Al₂O₃ benutzt. Zur Aufzeichnung der Ergebnisse diente das Zweikanalregistriergerät "Nanorac" (Sefram, Frankreich).

Für die Bestimmung der Umwandlungswärmen war es zweckmäßig die die Wärmekapazität von Probe und Halterung immer auf den gleichen Wert zu bringen. Dazu wurden mit der untersuchten Probe ins Gefässchen des DTA-Apparates kleine Messingplättchen eingesetzt, um die Wärmekapazität des Schwefels, des Glases und der Plättchen jedesmälig gleich 0,60 J/Grad zu erreichen [11]. Zur Bestimmung des Kettengehaltes wurde der Anteil des in CS₂ unlöslichen Schwefels gravimetrisch festgestellt. Dazu wurde der amorphe Schwefel (ungefähr 0,6 g) ebenfalls auf die beschriebene Weise gewonnen. Nach dem Herausziehen aus der Glasampulle (Innendurchmesser 6,5 mm, Rauminhalt etwa 0,7 cm³) wurde die amorphe Probe in Fliesspapier eingepackt. Die Gewichte des Schwefels und des Fliesspapiers wurden mit einer Genauigkeit von 0,0001 g ermittelt. Die Probe wurde bei Zimmertemperatur dreimal mit jeweils 40 ml/1 g S Schwefelkohlenstoff eine Stunde lang extrahiert und danach mit Azeton gewaschen. Nach dem Trocknen bei Zimmertemperatur wurde sie gewogen.

Ergebnisse

Es wurden vier Proben nach der DTA-Methode geprüft. Abb. 1 zeigt typische DTA-Kurven von einer Probe nach dem Umschmelzen bei unterschiedlichen Temperaturen T_f . Das DTA-Diagramm des rhombischen Schwefels (Kurve *a*) zeigt drei endotherme Prozesse. Ihre onset-Temperaturen für die vier geprüften Proben sind in der Tabelle 1 zusammengestellt. Da im verwendeten DTA-Apparat die Thermoelemente sich an der Gefäßoberfläche befinden [9, 10], sind die Umwandlungstemperaturen (Tabelle 1) höher als die wirklichen Werte [12]. Nach der Literaturangaben [13–16] kann man die DTA-Effekte folgenden Prozessen zuordnen:

— Umwandlung des rhombischen (S_{α}) in den monoklinen Schwefel (S_{β}) , der ebenfalls S_8 -Ringe, allerdings in einer anderen Anordnung, enthält [13].

- Schmelzen (die "natürliche" Schmelztemperatur 114°).

- Polymerisation der S₈-Ringe.

Im bei $121^{\circ} < T_f < 140^{\circ}$ umgeschmolzenen amorphen Schwefel (Abb. 1, Kurven b und c) verläuft ein exothermer Prozess I. Wenn $140^{\circ} < T_f < 159^{\circ}$ ist, wird er nicht mehr beobachtet (Kurve d). Die onset-Temperaturen T_I des Prozesses I nehmen mit steigender Umschmelztemperatur T_f zu (Abb. 2).

Die drei folgenden endothermen Effekte, die im amorphen Schwefel bei höheren Umwandlungstemperaturen verlaufen (Abb. 1, Kurven *b* und *c*), scheinen durch die gleichen Prozesse verursacht zu sein, wie im Falle der rhombischen Probe (Tabelle 1). Zwar sind die festgestellten onset-Temperaturen (Tabelle 1) etwas niedriger als beim rhombischen Schwefel, aber dieser Unterschied kann auf der Gegenwart der Polymere beruhen [17]. Es fällt auf, daß die Umwandlung $S_{\alpha} \rightarrow S_{\beta}$, ebenso wie der Prozess I, nicht mehr beobachtet wird, wenn $140^{\circ} < T_f < 159^{\circ}$ ist (Abb. 1, Kurve *d*).

Wenn $T_f \ge 170^\circ$ ist, verläuft im amorphen Schwefel ein neuer exothermer Prozess II bei Zimmertemperatur rasch (Abb. 1, Kurve e). Peak III verschiebt sich mit

	Onset Temperatur des Prozesses, °C							
	I	II	III	$S_{\alpha} \rightarrow S_{\beta}$	IV	Schmelzen	Polymerisation	
	Literaturangaben [14, 15, 16]							
Rhombischer S				95,4		114	159	
		Die experimentellen Werte						
Rhombischer S				103,2		119,7	164,4	
				102,7		119,1	172,8	
				102,7		117,6	161,7	
				102,7		117,6	164,4	
Mittelwert				102,8		118,5	165,8	
Amorpher S	30-40			101,0		113,8	161,7	
<i>T_f</i> < 159°				96,5		113,2	157,6	
				99,5		107,3	165,0	
				100,2		108,4	160,4	
Mittelwert				99,3		110,7	161,2	
Amorpher S			53,9	98,8	107,8	113,4	163,9	
$T_f > 159^\circ$		H	48,6	99,1	108,7	113,6	173,7	
		er-	51,2	97,1	108,0	114,0	165,4	
		nper	51,7	97,3	105,6	113,9	166,3	
Mittelwert		Zir ten	51,4	98,1	107,5	113,7	167,3	

 Tabelle 1
 Mittels DTA gemessene onset-Temperaturen der einzelnen Prozesse für die vier untersuchten Proben

Für jede amorphe Probe wurden die mittleren Werte der onset-Temperaturen angegeben, die auf Grund aller für sie erhaltenen DTA-Kurven festgestellt worden waren.

steigender T_f zu höheren Umwandlungstemperaturen (Abb. 1, Kurven e, f und g), was zeigt, daß die Geschwindigkeit des Prozesses II mit der Erhöhung der Temperatur T_f abnimmt.

Ein weiterer exothermer Prozess III erscheint bei 51,4° (Abb. 1, Kurven e und f). Er ist besonders deutlich im Falle der Proben, die beim Temperaturbereich T_f von 180° bis 230° umgeschmolzen wurden (Kurve f). Bei einer Erhöhung der Temperatur T_f wird der Prozess III immer schwerer festzustellen. Er verschwindet endlich, wenn $T_f \ge 350^\circ$ ist (Kurve g).

Bei 98,1 °C (Tabelle 1) beginnt ein endothermer Prozess (Abb. 1, Kurven *e*, *f* und *g*), der wahrscheinlich als Umwandlung $S_{\alpha} \rightarrow S_{\beta}$ zu identifizieren ist. Auch dieser Effekt verschwindet, wenn $T_f > 350^{\circ}$ ist.

J. Thermal Anal. 35, 1989

Abb. 1 DTA-Kurven von rhombischen Schwefel (a) und von amorphen Proben (b-g), die bei verschiedenen Temperaturen T_f umgeschmolzen wurden $(T_f$ -Werte werden in Klammern angegeben). Die Pfeile 1 zeigen die onset-Punkte der einzelnen Prozesse. – – – die Basislinie. Der Ausschnitt A-A und die Kurpve g zeigen auf welche Weise die Verschiebung der Basislinie beim Schmelzenpeak berücksichtigt wurde. Der Punkt K befindet sich in der Mitte des 1-Abschnittes. Die schraftierte Fläche des Schmelzpeaks wurde zu quantitativem Zwecke ausgewertet. 1 mm auf der ΔT -Achse = 3 mm auf der Registriergerätskala (= etwa 0,03 K). Aufheizgeschwindigkeit: 1,2 deg/Min. Vorschubgeschwindigkeit des Papiers: 2,5 mm/Min

Abb. 2 Die onset-Temperaturen T_1 des Prozesses I in Abhängigkeit von der Umschmelztemperatur T_f des flussigen Schwefels

1463

J. Thermal Anal. 35, 1989

J. Thermal Anal. 35, 1989

Abb. 3 Einfluss der Umschmelztemperatur T_f auf: a) die exothermen Umwandlungswärmen Q_I und Q_{III} , b) die endotherme Umwandlungswärme $Q_{a \to \beta}$, c) die exotherme Umwandlungswärme Q_{II} , d) den Gehalt an unlöslichem Schwefel, c) die Schmelzwärme Q_{Schm}

Bei 107,5° ist neuer exothermer Prozess IV zu beobachten (Abb. 1, Kurven e, f und g, Tabelle 1).

Die endothermen Prozesse, die bei 113,7 und 167,3° erscheinen (Tabelle 1, Abb. 1), kann man, wie beim rhombischen Schwefel, als Schmelzen und Polymerisation identifizieren. Es ist zu bemerken; dass die Polymerisation in den bei $T_f \ge 350^\circ$ umgeschmolzenen Proben nicht mehr verläuft (Abb. 1, Kurve g).

In Abhängigkeit von der Temperatur T_f wurden nach der DTA-Methode auch die Wärmen Q_1 , Q_{II} , Q_{III} , Q_{IV} , $Q_{\alpha \to \beta}$ und Q_{Schm} der Prozesse I, II, III, IV, der Umwandlung $S_{\alpha} \to S_{\beta}$ bzw. des Schmelzens bestimmt. Die DTA-Untersuchung wurde bei etwa 140° geendet, was besser reproduzierbare Resultate zu erhalten ermöglichte. Die Meßergebnisse der drei Proben sind graphisch als $\frac{Q_x}{Q_{rh}} = f(T)$ dargestellt (Abb. 3), wobei Q_x — die obenerwähnten Wärmen, Q_{rh} — die Schmelzwärme der rhombischen Modifikation bedeuten. Man soll zusatzsagen, dass die Effekte Q_x und Q_{rh} sich auf derselben Schwefelprobe beziehen. Der $\frac{Q_x}{Q_{rh}}$ Wert ist gleich dem Quotient $\frac{S_x}{S_{rh}}$, wobei S_x die dem Prozess X entsprechende Peakfläche auf dem DTA-Diagramm, S_{rh} — die Peakfläche für das Schmelzen auf der DTA-Kurve von der S_a -Modifikation sind (Abb. 1, Kurve a) [12].

Abbildung 3d zeigt den experimentell bestimmten Gehalt an unlöslichem Schwefel.

Die Abhängigkeit $\frac{Q_{IV}}{Q_{rh}} = f(T_f)$ ist nicht graphisch dargestellt. Diese Werte betrugen durchschnittlich 0.09 ± 0.012 unabhängig von der Temperatur T_f .

Da eine neutrale Basislinie schwer zu bestimmen ist, darf man die quantitativen Resultate nur zu Vergleichzwecke auswerten.

Diskussion

Für die Prozesse I, II, III and IV wird folgende Deutung angenommen.

Die bei $T_f < 159^{\circ}$ umgeschmolzene amorphe Schwefel besteht fast ausschliesslich aus ungeordnet gelagerten S₈-Ringen [18, 1]. Während des Prozesses I (Abb. 1, Kurven *b* und *c*) ordnen die S₈-Ringe ihre inneren Strukturen und gegenseitige Lagen, um das rhombische Gitter zubilden [8]. Demnach ist der Prozess I die Umwandlung C. Das Wachstum der rhombischen Kristallite verläuft vermutlich ausgehend von Keimen, die sich schon in dauerhafter Form in der amorphen Phase befinden. Die Zahl dieser Keime wirkt nicht nur auf die Prozessgeschwindigkeit ein, sondern wahrscheinlich auch auf die Menge der gebildeten S_a-Modifikation. Mit steigender Temperatur T_f nimmt die Anzahl dieser Keime ab, so daß der Prozess I gehemmt wird. Deshalb wird die onset-Temperatur T_1 immer höher (Abb. 2). Gleichzeitig wird der Gehalt an S_a immer kleiner, was die Verminderung des Q_1 -Effekts verursacht (Abb. 3a).

Die Wärmemenge $Q_{\alpha \to \beta}$ der Umwandlung $S_{\alpha} \to S_{\beta}$ zeigt mit entgegensetzten Vorzeichnen die gleiche Abhängigkeit von der Temperatur T_f wie der Q_I -Effekt (Abb. 3a und b). Es bestätigt die Vermutung, daß während des Prozesses I die S_{α} -Modifikation sich bildet.

Die bei $T_f > 159^\circ$ umgeschmolzenen Proben enthalten einen hohen Anteil an polymeren Schwefel (Abb. 3d). Es ist zu vermuten, daß während des Prozess II die Umwandlung der Ketten in die kleinen Ringe, besonders in die stabilen S₈-Ringe eine wesentliche Rolle spielt (Umgestaltung A). Damit wird die Vergrösserung des Q_{II} -Effekts mit der Zunahme des Kettengehaltes verständlich (Abb. 3c und d). Es ist möglich, daß auch die Umwandlungen B und C am Prozess II teilweise beteiligt sind.

Die Hemmung des Prozesses II mit steigender Temperatur T_f (Abb. 1, Kurven e, f und g) lässt sich aus dem vermutlichen mechanismus der Kettenumgestaltung erklären. Im amorphen Schwefel liegen die Ketten mehr oder weniger parallel [5]. Manche —S—S-Bindungen, die durch Ausdehnen, Biegen usw. abgeschwächt werden, können aufbrechen, was die Querverknüpfungen zwischen den Ketten ermöglicht (Abb. 4). Als die Endprodukte solcher Bindungsumgruppierung bilden sich die kleinen Ringe, wobei die Entstehung der stabilen S₈-Ringe

bevorzugt ist [14, 15, 20]. Es ist anzunehmen, dass die —S—S-Bindungen in den instabilen S_m-Ringen ($m \neq 8$) ebenfalls aufbrechen. Dabei führt die Reaktion der S-Radikale mit den benachbarten S-Atomen zur Entstehung von Polymeren [14, 15, 20]. Diese wandeln sich auf die beschriebene Weise in die kleinen Ringe um (Abb. 4), vorzugweise in die stabilen S₈-Ringe. Die parallele Kettenanordnung wird mit der Steigerung der Temperatur T_f immer schlechter [5, 19], wodurch die Ringbildung erschwert wird (Abb. 4) Darauf könnte die festgestellte Verringerung der Geschwindigkeit des Prozesses II mit steigender Temperatur T_f (Abb. 1, Kurven *e*, *f* und *g*) zurückzuführen sein.

Abb. 4 Schema des Umgestaltungsmechanismus der Ketten zu den kleinen Ringen

Die Ringbildung kann vermutlich nur in Mikrogebieten beginnen, in denen die energetischen Bedingungen und die parallele Kettenanordnung diesen Prozess begünstigen. Wenn diese energetischen und geometrischen Bedingungen besonders geeignet sind, kann die Ringbildung sogar bei Zimmertemperatur rasch verlaufen. Dagegen in den anderen Mikrogebieten, die energetisch und geometrisch nicht so begünstigt sind, bilden sich die kleinen Ringe mit meßbarer Geschwindigkent wahrscheinlich erst oberhalb der Temperatur der Umwandlung $S_{\alpha} \rightarrow S_{\beta}$ oder sogar oberhalt der Schmelztemperatur. Dann wird die innere Struktur lockerer und die Ketten werden beweglicher, was die exotherme Ringbildung beschleunigt. Es ist möglich, daß diese Bildung auch für das Auftreten des Prozesses IV (Abb. 1, Kurven *e*, *f* und *g*) und für die Abnahme der gemessenen Schmelzwärme (Abb. 3c) verantwortlich ist.

In der bei $T_f > 350^\circ$ umgeschmolzenen Probe ist die parallele Kettenanordnung am schlechtesten. Deshalb wandeln sich die Ketten so langsam um, daß sie sogar oberhalb $T_f = 159^\circ$ noch in grosser Menge vorhanden sind und die Polymerisation der S₈-Ringe bei 159° nicht mehr nachweisbar ist (Abb. 1, Kurve g).

Wahrscheinlich, ausser der langsam verlaufenden Ringbildung, spielt der Aufbau des rhombischen Gitters (Umwandlung C) im Prozess III (Abb. 1, Kurve *e* und *f*) eine wesentliche Rolle. Direkt nach ihm findet die Umwandlung $S_{\alpha} \rightarrow S_{\beta}$ statt, die vorherige Entstehung der S_{α} -Modifikation voraussetzt. Für die Bildung von S_{α} beim Prozess III spricht auch der Befund, daß die Umwandlungswärmen Q_{m} und $Q_{\alpha \rightarrow \beta}$ (bei entgegensetzten Vorzeichen) die gleiche Abhängigkeit von T_{f} zeigen (Abb. 3a und b). Vermutlich bildet sich S_{α} auf folgende Weise. Zunächst bewirkt der verhältnismässig intensive exotherme Q_{II} -Effekt im amorphen Schwefel örtliche Temperaturserhöhungen, die zur Entstehung der rhombischen Keime führen. Von der Intensität dieses Effekts scheint die Keimzahl abzuhängen, die danach auf die Menge der im Prozess III gebildeten S_{α} -Modifikation beeinflusst (analog wie im Falle des Prozesses I). Die Wärme Q_{II} nimmt dementsprechend in Abhängigkeit von der Temperatur T_f anfänglich zu (bis etwa 250°, Abb. 3c). Ebenso steigt die Menge der gebildeten rhombischen Phase und folglich die Wärme Q_{III} an (Abb. 3a). Bei weiterer Erhöhung der Temperatur T_f wird der Prozess II gehemmt (s. oben), was die Intensität des Effekts II vermindert. Deshalb wird die anzahl von den S_{α} -Keimen kleiner, woraus eine Verminderung der Menge des rhombischen Schwefels und der Wärme Q_{III} erfolgt (Abb. 3a).

In [21] wurde der Anteil γ an S_a-Modifikation in bei verschiedenen Temperaturen T_f umgeschmolzenen amorpnen Proben nach 24 Stunden Aufbewahrung bei 25° röntgenographisch bestimmt. Z. b. für T_f : 120, 191, 271 und 410° wurden γ -Werte: 0,94, 0,43, 0,65 bzw. 0,32 gefunden. Diese Feststellung, die auf den ersten Blick keine Gesetztmässigkeit erkennen läßt, zeigt mit gewissen Temperatursverschiebung eine deutlich Analogie zu der bestimmten Abhängigkeit der Wärmen Q_1 und Q_{III} von der Umschmelztemperatur T_f (Abb. 3a). Darin ist eine Bestätigung der hier vorgeschlagenen Deutung der Prozesse I und III zu sehen.

Literatur

- 1 R. Steudel, R. Strauss und L. Koch, Angew. Chem. Int. Ed., 24 (1985) 59.
- 2 R. E. Powell und H. Eyring, J. Am. Chem. Soc., 65 (1943) 648.
- 3 W. Kauzmann und H. Eyring, ibid., 62 (1940) 3113.
- 4 A. V. Tobolsky, J. Polymer. Sci., 25 (1957) 220 und 31 (1958) 126.
- 5 H. Krebs, Z. Naturforsch., 12b (1957) 795.
- 6 R. Steudel, S. Passlack-Stephany und G. Holdt, Z. Anorg. Allg. Chem., 517 (1984) 7.
- 7 B. E. Warren und J. T. Burwell, J. Chem. Physics, 3 (1935) 6.
- 8 W. Reimschussel, W. Świątkowski, und G. Trybulska, J. Thermal Anal., 14 (1978) 99.
- 9 J. Kroh, E. Szajdzińska und W. Swiątkowski, Bull. de l'Acad. Polon. Sci. Ser. Sci. chim., XXIV (1976) 3 253.

- J. Kroh, E. Szajdzińska und W. Świątkowski, Radiochem. Radioanal. Letters, 36 (1978) 287.
- 11 Z. Gałdecki, Z. Górkiewicz, W. Reimschussel und W. Świątkowski, Roczniki Chemii, 50 (1976) 1231.
- 12 D. Schultze, "Differentialthermoanalyse" VEB Deutscher Verlag der Wissenschaften, Berlin 1969. S. 33–35.
- 13 J. T. Burwell, Z. Krist., 97 (1973) 123.
- 14 B. Meyer, "Elemental sulfur" Interscience Pub. New York 1965. S. 45-69 und 86-87.
- 15 Gmelins-Handbuch, "Schwefel", Band 9, Teil A, Achte Auflage Verlag Chemie GmbH Weinheim.
- 16 M. Schmidt und H. D. Block, Z. Anorg. Allg. Chem., 385 (1971) 119.
- 17 A. Smith und O. M. Carson, Z. Physik. Chem., 77 (1911) 661.

- 18 R. H. Ewell und H. Eyring, J. Chem. Phys., 5 (1937) 726.
- 19 H. Richter und F. Herre, Z. Naturforsch., 13a (1958) 874.
- 20 R Steudel, Z. Anorg. Allg. Chem., 478 (1981) 139.
- 21 Z. Gałdecki und Z. Górkiewicz, Mitteilungen der Konferenz "Der Elementare Schwefel". Baranów, Polen 1975, S. 286.

Zusammenfassung — Mittels der DTA-Methode wurden bei verschiedenen Temperaturen T_f umgeschmolzene Proben von amorphem Schwefel untersucht. Wenn $T_f < 159$ °C ist, verläuft in der amorphen Probe bei 30-40 °C ein exothermer Prozess I. Bei höheren Temperaturen sind die Umwandlung der rhombischen in die monokline Modifikation, das Schmelzen und die Polymerisation der S₈-Ringe nacheinander zu beobachten. Wenn $T_f > 159$ °C beträgt, verläuft ein neuer exothermer Prozess II bei Zimmertemperatur rasch. Direkt nach ihm erscheint ein exothermer Prozess III. In der Nähe der Schmelztemperatur ist ein exothermer Prozess IV zu entdecken. Die Wärme der nachgewiesenen Prozesse wurde gemessen. Der Anteil des in CS₂ unlöslichen Schwefels wurde bestimmt. Ein Umwandlungsmechanismus wird vorgeschlagen.

Резюме — Метод ДТА был применен для исследования аморфных образцов серы, вновь расплавленных при различных температурах T_f . Для образцов расплавленных при $T_f < 159^\circ$ в области 30-40° наблюдается экзотермический эффект I. Превращение орторомбической серы до моноклинной, плавление и полимеризация колец S₈ наблюдалось при более высоких температурах. Для образца расплавленного при $T_f > 159^\circ$ уже при обычной температуре наблюдается новый и быстрый экзотермический процесс II, за которым следует при слегка более высокой температуре экзотермический процесс III. Следующий экзотермический процесс IV может быть обнаружен в окрестностях точки плавления. Определены теплоты термических эффектов всех вышеупомянутых процессов, а также часть серы, нерастворимой в сероуглероде. Предприняты попытки определения механизма превращений.